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ABSTRACT

G-SAMPLE is an in-flight dynamical method for use by sample collection missions to identify
the presence and quantity of collected sample material. The G-SAMPLE method implements a
maximum-likelihood estimator to identify the collected sample mass, based on onboard force sensor
measurements, thruster firings, and a dynamics model of the spacecraft. With G-SAMPLE, sample
mass identification becomes a computation rather than an extra hardware requirement; the added
cost of cameras or other sensors for sample mass detection is avoided. Realistic simulation examples
are provided for a spacecraft configuration with a sample collection device mounted on the end of an
extended boom. In one representative example, a 1000 gram sample mass is estimated to within 110
grams (95% confidence) under realistic assumptions of thruster profile error, spacecraft parameter
uncertainty, and sensor noise. For convenience to future mission design, an overall sample-mass
estimation error budget is developed to approximate the effect of model uncertainty, sensor noise,
data rate, and thrust profile error on the expected estimate of collected sample mass.

1External release version of JPL Internal Document D-35998
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1 Introduction

The G-SAMPLE algorithm provides a means of passively identifying collected sample mass by using
the spacecraft dynamics, along with onboard sensor data collected during the ascent phase of a
sample collection mission. The research conducted herein is intended to demonstrate the feasibility
of utilizing sensors and dynamics models for in-flight sample-mass identification. As such, the
system under study is simplified into a planar motion problem, with the model properties sized to
be representative of a more-complex dynamics model.

2 Equations of Motion

2.1 Spacecraft Model

The identification algorithms are developed for a spacecraft in planar motion. The planar model
used is a simplification of a representative spacecraft configuration for a sample collection mission
(See figure 1). As seen in the figure, the primary spacecraft body (with mass mSC and inertia ISC)
has two attached thrusters, along with an attached rigid boom (mass mB, inertia IB). The first
flexible mode of the rigid boom is modeled with a rotational spring and damper. Rigidly attached
to the end of the boom is a sample-collection device or end effector (mass mbw, inertia Ibw). The
sample mass (ms), is attached to the boom/end-effector through a force sensor that allows axial
translation of the sample mass along the boom longitudinal axis. The force sensor is modeled as a
spring-mass-damper system with properties klc, mlc, and clc, respectively.

Figure 1: Spacecraft Model and Convenient Reference Frames and Relative Vectors

This multi-body dynamical system includes an offset between the spacecraft main-bus center
of mass and the extended boom. Additionally, the thrust and thruster attachments are assumed
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non-symmetrical with respect to the spacecraft main-bus center of mass (as represented by rT1,
rT2, T1, and T2 vectors in figure 1). This model utilizes five degrees of freedom: inertial coordinates
x, y, and θ, and relative coordinates θb and d:

q = (x, y, θ, θb, d)T (1)

Reference frame 0 in figure 1 is inertial, frame 1 is body-fixed on the spacecraft main-bus center
of mass, and frame 2 is body-fixed to the boom at the spring hinge. All three frames are used to
develop the multi-body dynamics. Note, the relative degree of freedom d is constrained to move
axially along the boom, thus the rotation rate of the boom is identical to the rotation rate of the
sample. Also, d is assumed positive in extension.

2.2 Kinematics

The kinematic relationships for the radii are as follows:

r1 =
(

x
y

)
(2)

r2 = r1 + T 0
1 r1

A + T 0
2 r2

B =
(

x + (b cos θ + a sin θ) + L
2 sin(θ + θb)

y + (b sin θ − a cos θ) − L
2 cos(θ + θb)

)
(3)

r3 = r1 + T 0
1 r1

A + T 0
2 r2

C =
(

x + (b cos θ + a sin θ) + L sin(θ + θb)
y + (b sin θ − a cos θ) − L cos(θ + θb)

)
(4)

r4 = r1 + T 0
1 r1

A + T 0
2 r2

D =
(

x + (b cos θ + a sin θ) + (L + d) sin(θ + θb)
y + (b sin θ − a cos θ) − (L + d) cos(θ + θb)

)
(5)

with r1
A =

(
b
−a

)
, r2

B =
(

0
−L

2

)
, and r2

C =
(

0
−L

)
, and r2

D =
(

0
−L − d

)
. The coordinates of r1

are in an inertial basis for frame 0, and r2, r3, and r4 are all transformed into the inertial basis.
Note, T p

s represents the rotation matrix from frame s into frame p, and a superscript integer s
after a vector (ex. rs

B) indicates the vector components are written in coordinates of frame s. The
expressions for the rotation matrices are as follows:

T 0
1 =

[
cos θ − sin θ
sin θ cos θ

]
(6)

T 0
2 = T 0

1 T 1
2 = T 0

1

[
cos θb − sin θb

sin θb cos θb

]
=
[

cos(θ + θb) − sin(θ + θb)
sin(θ + θb) cos(θ + θb)

]
(7)

The velocities associated with the four radii are

v1 =
(

ẋ
ẏ

)
(8)

v2 = ṙ1 + T 0
1 �

��
0

ṙ1
A + ω̂0

1T
0
1 r1

A + T 0
2 �

��
0

ṙ2
B + ω̂0

2T
0
2 r2

B =
(

ẋ − θ̇(b sin θ − a cos θ) + (θ̇ + θ̇b)L
2 cos(θ + θb)

ẏ + θ̇(b cos θ + a sin θ) + (θ̇ + θ̇b)L
2 sin(θ + θb)

)
(9)

v3 = ṙ1 + T 0
1 �

��
0

ṙ1
A + ω̂0

1T
0
1 r1

A + T 0
2 �

��
0

ṙ2
C + ω̂0

2T
0
2 r2

C =
(

ẋ − θ̇(b sin θ − a cos θ) + (θ̇ + θ̇b)L cos(θ + θb)
ẏ + θ̇(b cos θ + a sin θ) + (θ̇ + θ̇b)L sin(θ + θb)

)
(10)
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v4 = ṙ1 + T 0
1 �

��
0

ṙ1
A + ω̂0

1T
0
1 r1

A + T 0
2 ṙ2

D + ω̂0
2T

0
2 r2

D

=
(

ẋ + ḋ sin(θ + θb) − θ̇(b sin θ − a cos θ) + (θ̇ + θ̇b)(L + d) cos(θ + θb)
ẏ − ḋ cos(θ + θb) + θ̇(b cos θ + a sin θ) + (θ̇ + θ̇b)(L + d) sin(θ + θb)

)
(11)

with each velocity vector having components in an inertial basis, ω0
1 = θ̇k̂, and ω0

2 = (θ̇ + θ̇b)k̂.
Note, ω̂0

i is the matrix representation of the cross product operator, so

ω̂0
1 = ω0

1 × (·) =
[

0 −θ̇

θ̇ 0

]
and ω̂0

2 = ω0
2 × (·) =

[
0 −(θ̇ + θ̇b)

(θ̇ + θ̇b) 0

]
which is written in two dimensions since the system is only allowed planar motion. The expressions
for vi and ω0

i can be expressed in terms of the generalized coordinates of (1):

v1 = B1q̇, B1 =
[

1 0 0 0 0
0 1 0 0 0

]
(12)

v2 = B2q̇, B2 =
[

1 0 −b sin θ + a cos θ + L
2 cos(θ + θb) L

2 cos(θ + θb) 0
0 1 b cos θ + a sin θ + L

2 sin(θ + θb) L
2 sin(θ + θb) 0

]
(13)

v3 = B3q̇, B3 =
[

1 0 −b sin θ + a cos θ + L cos(θ + θb) L cos(θ + θb) 0
0 1 b cos θ + a sin θ + L sin(θ + θb) L sin(θ + θb) 0

]
(14)

v4 = B4q̇, B4 =
[

1 0 −b sin θ + a cos θ + (L + d) cos(θ + θb) (L + d) cos(θ + θb) sin(θ + θb)
0 1 b cos θ + a sin θ + (L + d) sin(θ + θb) (L + d) sin(θ + θb) − cos(θ + θb)

]
(15)

ω0
1 = C1q̇ where C1 =

[
0 0 1 0 0

]
(16)

ω0
2 = C2q̇ where C2 =

[
0 0 1 1 0

]
(17)

2.3 External and Non-Conservative Forces

The external and other non-conservative forces are added into the dynamics through the following
equations [1]:

Qj =
NI∑
i=1

(
FNI

i · γi,j + Mi · βi,j

)
+

NP∑
i=1

FNP
i · γNP

i,j (18)

where NI is the number of bodies with inertia, NP is the number of point masses, FNI
i and

FNP
i are the external or non-conservative forces applied to the inertial bodies and point masses,

respectively, Mi are the external or non-conservative moments applied to the inertial bodies, and
j are the number of degrees of freedom (five in this spacecraft model, corresponding to q given in
relationship (1)). Note, γNI

i,j = ∂ri
∂qj

= ∂vi
∂q̇j

and βi,j = ∂ωi
∂q̇j

have ri (absolute center-of-mass position),

vi (absolute center-of-mass velocity), and ωi (absolute angular velocity) all referring to the ith

inertial body. Also, γNP
i,j = ∂ri

∂qj
has ri referring to absolute position of the ith point mass.

The sample ms is the only point mass in the system (NP = 1), and there are three inertial
bodies in the model (NI = 3): the main spacecraft bus, the boom, and the end effector. The
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following are the external and non-conservative forces and moments:

FNI
1 = T 0

1 (T1 + T2) M1 = cbθ̇b + rT1 × T1 + rT2 × T2 (19)

FNI
2 = 0 M2 = −cbθ̇b (20)

FNI
3 = T 0

2

(
0

−clcḋ

)
M3 = 0 (21)

FNP
1 = T 0

2

(
0

clcḋ

)
(22)

for thrust vectors T1 and T2 with thruster locations rT1 and rT2, respectively, all written in frame 1.
Note, since the dynamics model is planar, the moments Mi are all positive for a counter-clockwise,
in-plane rotation. For the ri, vi, and ωi of the spacecraft dynamics model, the necessary γNI

i,j , γNP
i,j ,

and βi,j matrices are

γNI
1,j =

[
1 0 0 0 0
0 1 0 0 0

]
, (23)

γNI
3,j =

[
1 0 −b sin θ + a cos θ + L cos(θ + θb) L cos(θ + θb) 0
0 1 b cos θ + a sin θ + L sin(θ + θb) L sin(θ + θb) 0

]
, (24)

β1,j =
[

0 0 1 0 0
]
, (25)

β2,j =
[

0 0 1 1 0
]
, and (26)

γNP
1,j =

[
1 0 −b sin θ + a cos θ + (L + d) cos(θ + θb) (L + d) cos(θ + θb) sin(θ + θb)
0 1 b cos θ + a sin θ + (L + d) sin(θ + θb) (L + d) sin(θ + θb) − cos(θ + θb)

]
(27)

where j signifies the column number.
The resultant non-conservative-forces vector Q = (Q1, Q2, Q3, Q4, Q5)T is

Q1 = T 0
1 (T1 + T2) ·

[
1
0

]
(28)

Q2 = T 0
1 (T1 + T2) ·

[
0
1

]
(29)

Q3 = (rT1 × T1 + rT2 × T2) · [1] (30)

Q4 = −cbθ̇b · [1] = −cbθ̇b (31)

Q5 = T 0
2

(
0

clcḋ

)
·
[

sin(θ + θb)
− cos(θ + θb)

]
= −clcḋ. (32)

For clarity, the [1] in the above equations is the corresponding element from the appropriate βi,j

matrix.

2.4 Dynamics

The multi-body dynamics model is developed based on Lagrangian mechanics [1], with the final
equations having the form
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d

dt

(
∂T

∂q̇

)
− ∂T

∂q
= Q − ∂U

∂q
. (33)

The kinetic energy for the multi-body system is

T =
1
2
mSCvT

1 v1 +
1
2
ISCωT

1 ω1 +
1
2
mBvT

2 v2 +
1
2
IBωT

2 ω2 +
1
2
mbwvT

3 v3 +
1
2
IbwωT

2 ω2 +
1
2
(ms +mlc)vT

4 v4

which can be expressed in terms of the generalized coordinate vector q by using expressions (12)–
(17):

T =
1
2
q̇T
[
mSCBT

1 B1 + mBBT
2 B2 + mbwBT

3 B3 + (ms + mlc)BT
4 B4 + ISCCT

1 C1 + (IB + Ibw)CT
2 C2

]
︸ ︷︷ ︸

M(q)

q̇

=
1
2
q̇T M(q)q̇ . (34)

The mass matrix M(q) is configuration dependent since matrices B2, B3, and B4 depend on com-
ponents in q.

The potential energy of the system is

U =
1
2
kbθ

2
b +

1
2
klcd

2 +
4∑

i=1

V i
SB(si), si ∈ R

p (35)

where kb is the rotational spring stiffness, klc is the load-sensor stiffness, and V i(si) represents a
gravity potential between spacecraft component i and the body it is orbiting. Note, the i com-
ponents represent the primary spacecraft body, rigid boom, end effector, and sample/force-sensor
mass combination. Additionally, si ∈ R

p indicates that the gravity potential may be expressed in
a different coordinate system than the spacecraft dynamics. The assumption is made that si can
be expressed as si(q), thus the contribution of potential energy in the equations of motion (33) is
expressed as

∂U

∂q
= Kq +

4∑
i=1

(
∂si

∂q

)T
∂VSB(si)

∂si
(36)

with K =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 kb 0
0 0 0 0 klc

⎤⎥⎥⎥⎥⎦ and ∂si

∂q =

⎡⎢⎢⎣
∂si

1
∂q1

. . .
∂si

1
∂q5

...
. . .

...
∂si

p

∂q1
. . .

∂si
p

∂q5

⎤⎥⎥⎦.

Derivation of the multi-body equations of motion will make extensive use of the following
identity [2]:

∂

∂q
[A(q)B(q)] = (In ⊗ A)

∂B

∂q
+

∂A

∂q
B, q ∈ R

n (37)

where In is an n × n identity matrix,

∂A

∂q
≡

⎡⎢⎢⎢⎢⎣
∂A
∂q1
∂A
∂q2

...
∂A
∂qn

⎤⎥⎥⎥⎥⎦ , (38)
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and ⊗ represents the Kronecker Product.
The first term in (33), expressed by using the identity in (37), is

∂T

∂q̇
= M(q)q̇

d

dt

(
∂T

∂q̇

)
= M(q)q̈ +

d

dt
[M(q)] q̇ = M(q)q̈ +

(
5∑

i=1

∂M(q)
∂qi

q̇i

)
q̇

= M(q)q̈ +
(

∂M

∂q

)T

(q̇ ⊗ I5) q̇ (39)

where ∂M
∂q is defined as in (38) with A = M(q) and n = 5. The second term in (33) is similarly

derived by using the identity in (37):

∂T

∂q
=

1
2

∂

∂q

[
q̇T M(q)

]
q̇ =

1
2

[(
I5 ⊗ q̇T

) ∂M

∂q
+

�
�

���
0

∂q̇T

∂q
M(q)

]
q̇

=
1
2
(
I5 ⊗ q̇T

) ∂M

∂q
q̇ (40)

with ∂M
∂q again defined as in (38). Thus, the equations of motion for the spacecraft become

M(q)q̈ +

[(
∂M

∂q

)T

(q̇ ⊗ I5) − 1
2
(
I5 ⊗ q̇T

) ∂M

∂q

]
q̇ = Q − ∂U

∂q
. (41)

Matrices B2, B3, and B4 are the contributors to the configuration dependence of M(q), thus

∂M

∂q
= mB

∂

∂q
(BT

2 B2) + mbw
∂

∂q
(BT

3 B3) + (ms + mlc)
∂

∂q
(BT

4 B4)

= mB

[
(I5 ⊗ BT

2 )
∂B2

∂q
+

∂(BT
2 )

∂q
B2

]
+ mbw

[
(I5 ⊗ BT

3 )
∂B3

∂q
+

∂(BT
3 )

∂q
B3

]
+ (ms + mlc)

[
(I5 ⊗ BT

4 )
∂B4

∂q
+

∂(BT
4 )

∂q
B4

]
(42)

where the identity in (37) has been used. The components are then

∂Bi

∂q
=

⎡⎢⎢⎢⎢⎣
02×5

02×5

A1,i

A2,i

A3,i

⎤⎥⎥⎥⎥⎦ and
∂(BT

i )
∂q

=

⎡⎢⎢⎢⎢⎣
05×2

05×2

AT
1,i

AT
2,i

AT
3,i

⎤⎥⎥⎥⎥⎦ . (43)

For i = {2, 3}, the components of A1,i, A2,i, and A3,i are as follows:

A1,i =
[

0 0 −b cos θ − a sin θ − li sin(θ + θb) −li sin(θ + θb) 0
0 0 −b sin θ + a cos θ + li cos(θ + θb) li cos(θ + θb) 0

]
(44)

A2,i =
[

0 0 −li sin(θ + θb) −li sin(θ + θb) 0
0 0 li cos(θ + θb) li cos(θ + θb) 0

]
(45)

A3,i = 02×5 (46)
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where li = {L
2 , L} corresponding to i = {2, 3}, respectively. For i = {4},

A1,4 =
[

0 0 −b cos θ − a sin θ − (L + d) sin(θ + θb) −(L + d) sin(θ + θb) cos(θ + θb)
0 0 −b sin θ + a cos θ + (L + d) cos(θ + θb) (L + d) cos(θ + θb) sin(θ + θb)

]
(47)

A2,4 =
[

0 0 −(L + d) sin(θ + θb) −(L + d) sin(θ + θb) cos(θ + θb)
0 0 (L + d) cos(θ + θb) (L + d) cos(θ + θb) sin(θ + θb)

]
(48)

A3,4 =
[

0 0 cos(θ + θb) cos(θ + θb) 0
0 0 sin(θ + θb) sin(θ + θb) 0

]
. (49)

Through the use of identity (37), equation (41) is now a convenient form for implementation in
simulations because the Kronecker Product is a built-in function of simulation environments such
as Matlab.

2.5 Conservative Forces (from Gravity Potential)

For development of G-SAMPLE, the gravity potential V i
SB(si) in equation (35) is expressed as

V i
SB(si) = mighi (50)

for each component i = {1, 2, 3, 4} where gravity g is assumed constant and si = hi is the altitude
above the surface. For the four components, hi is the second component of the radius vectors
in equations (2)–(5), and the mi components are m1 = mSC , m2 = mB, m3 = mbw, and m4 =
(ms + mlc). The contribution of the gravity potential to the conservative forces, as expressed in
equation (36), is determined as follows:

∂VSB(si)
∂si

= mig (51)

since si = hi, and

∂s1

∂q
=
[

0 1 0 0 0
]

(52)

∂s2

∂q
=
[

0 1 b cos θ + a sin θ + L
2 sin(θ + θb) L

2 sin(θ + θb) 0
]

(53)

∂s3

∂q
=
[

0 1 b cos θ + a sin θ + L sin(θ + θb) L sin(θ + θb) 0
]

(54)

∂s4

∂q
=
[

0 1 b cos θ + a sin θ + (L + d) sin(θ + θb) (L + d) sin(θ + θb) − cos(θ + θb)
]
. (55)

Thus, in equation (36),

4∑
i=1

(
∂si

∂q

)T
∂VSB(si)

∂si
= g

⎛⎜⎜⎜⎜⎝
0

mtot

mapp(b cos θ + a sin θ) + meff sin(θ + θb)
meff sin(θ + θb)

−(ms + mlc) cos(θ + θb)

⎞⎟⎟⎟⎟⎠ (56)

where mtot = (mSC + mB + mbw + ms + mlc), mapp = (mB + mbw + ms + mlc), and meff =
(mB

L
2 + mbwL + (ms + mlc)(L + d)).
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3 Sensor Models for Detecting Sample Mass

The force sensor in figure 2 is assumed to be an axially flexible component that connects the
boom/end-effector to the collected sample. The force sensor is modeled as a linear spring-mass-
damper system with stiffness klc, mass mlc, and damping coefficient clc:

Flc = klcd + clcḋ (57)

where positive, tensile forces measured by Flc correspond to a positive extension of degree-of-
freedom d. The actual metric obtained from the force sensor in this study is displacement d.

Figure 2: Force Sensor to Measure Relative Displacement d

If an accelerometer is included on the sample mass container, then the kinematic relationships
in (5) are used to model the sample-mass acceleration. The inertial acceleration of the sample mass
is

r̈4 =

(
ẍ + d̈ sin(θ + θb) +

[
2ḋ(θ̇ + θ̇b) + (L + d)(θ̈ + θ̈b)

]
cos(θ + θb) − (L + d)(θ̇ + θ̇b)2 sin(θ + θb)

ÿ − d̈ cos(θ + θb) +
[
2ḋ(θ̇ + θ̇b) + (L + d)(θ̈ + θ̈b)

]
sin(θ + θb) + (L + d)(θ̇ + θ̇b)2 cos(θ + θb)

−θ̈(b sin θ − a cos θ) − θ̇2(b cos θ + a sin θ)
+θ̈(b cos θ + a sin θ) − θ̇2(b sin θ − a cos θ)

)
. (58)

Since force and acceleration measurements are along the boom axis, the acceleration of the sample
mass is rotated into frame 2 (Refer back to figure 1 for a clarification of frame 2):

r̈2
4 = T 2

0 r̈4

where T 2
0 = (T 0

2 )T (Refer back to equation (7)). The sample-mass acceleration r̈2
4 is a 2-element

vector and contains both the axial and transverse acceleration of the sample (the axial component
is the 2nd element in the vector). The axial component can be related to the load sensor force Flc

through a simple force balance such that

Flc = klcd + clcḋ = (ms + mlc)(alc + g̃) (59)

where alc represents the 2nd element of r̈2
4, and g̃ is the contribution of gravity along the boom axis.

Note, this relationship can also be used to verify that simulations are implemented correctly.

4 Sample Mass Estimator

The estimator utilized by G-SAMPLE is based on the error between force-sensor displacement
measurements and displacement values expected from the force-sensor model in equation (57). The
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∈ N (0, 2
k)

+

u(t)

ẋ= f (x,u;ms)
y= h(x,u;ms)

actual dynamics measure

yk = y(tk)

ms
actual sample mass

ŷk = ŷ(tk)
˙̂x= F(x̂,u; m̂s)
ŷ= H(x̂,u; m̂s)

dynamics model estimate

m̂s

guess sample mass

thrust
input

measurement noise

-

ŷk

zk

ek = zk− ŷk

ηk

Figure 3: Measurement Versus Model for Estimator Implementation

measurement noise ηk is assumed to be white, zero-mean Gaussian noise with variance σ2
k and is

additive to the load-sensor displacement measurement (as shown in Figure 3).
An assumption is made that the load sensor can be calibrated during a thruster-silence period

prior to descent toward the surface. During this maneuver, the sample mass ms = 0, and any biases
in the load sensor can be characterized and removed from subsequent measurements. The 0-mean
and Gaussian measurement noise ηk ∈ N (0, σ2

k) is also assumed to have fixed variance (σ2
lc) for all

measurements. During the thruster-silence calibration, the measurement noise variance σ2
lc can be

characterized as well.
The cost function utilized by G-SAMPLE is the summed, weighted mean-square error

min
m̂s

J =
N∑

k=1

(zk − ŷk)2

σ2
k

(60)

where N is the total number of measurements, zk is the force sensor measurement along the boom
axial direction (which includes the effects of measurement noise), and ŷk is the expected force
sensor measurement (Flc) from the guessed sample mass m̂s. The minimum of cost function J is
found through a line search over a range of m̂s. This minimum corresponds to the MLE (Maximum
Likelihood Estimate) of the collected sample mass, mMLE

s . Confidence limits on mMLE
s are obtained

with
J(m̂s) − J(mMLE

s ) < q(α) (61)

where q(α) is the α quantile of the 1-degree-of-freedom Chi-Squared distribution. Appendix A
details the derivation of cost function (60) and confidence limits (61).

5 G-SAMPLE Analysis

This section conducts in-depth analysis of G-SAMPLE. The analysis is separated into simulation,
estimation, and sensitivity analyses. The simulation subsection discusses the spacecraft model and
typical dynamic response characteristics, including the pure and noisy load sensor. The estimation
subsection provides cost analysis based on several different collected sample masses and includes
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confidence limits for different levels of sensor noise. The sensitivity subsection examines the ro-
bustness of G-SAMPLE to errors in spacecraft parameters, along with a study of the sensitivity of
G-SAMPLE to errors in thrust profile.

5.1 Simulation

Simulations are based on representative parameters for a spacecraft conducting sample collection on
a small celestial body (moon, asteroid, comet). See Table 1 for a listing of relevant parameters. Ad-
ditionally, the thruster firing sequence utilized in the simulations is based on a representative ascent
sequence where the firings are designed to keep the spacecraft orientation level (i.e. θ ≈ 0) during as-
cent.

Table 1: Simulation Parameters
parameter value description

mSC 800 kg spacecraft main-bus mass
ISC 500 kg-m2 spacecraft main-bus inertia
mB 0.5 kg flexible boom mass
IB 0.6 kg-m2 flexible boom inertia about boom c.m.

mbw 20 kg end-effector mass
Ibw 0 end-effector inertia
L 3.78 m flexible boom length
a 0.53 m axial offset of boom from spacecraft main-bus c.g.
b 0.53 m lateral offset of boom from spacecraft main-bus c.g.

Tmax 22 N max. thrust from 45◦ canted thrusters, 2 per side
f1 0.16 Hz fundamental flexible mode frequency
ζ1 0.001 fundamental flexible mode damping

mdesired
s 0.5 kg desired amount of sample mass to collect

The position of the thrusters is as follows:

rT1 =
( −0.9367

−0.545

)
m and rT2 =

(
0.9367
−0.545

)
m (62)

where rT1 and rT2 are specified in coordinates of the main spacecraft bus (frame 1).
The boom-hinge spring constant kb in the dynamics (and as shown in figure 1) is based on the

fundamental flexible mode (f1) of a representative spacecraft/boom combination:

kb = ω2
1

ISC · Iboom

ISC + Iboom
(63)

where ω1 = 2πf1, and Iboom is the moment of inertia about the spring hinge for the combination
of the flexible boom and the end effector:

Iboom =
1
3
mBL2 + mbwL2. (64)

The boom-hinge damping cb is based on the following equation:

cb = 2ζ1ω1
ISC · Iboom

ISC + Iboom
(65)
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where ζ1 is the damping coefficient chosen for the fundamental mode.
The load sensor is designed such that the unloaded frequency of sensor oscillation is 20 Hz, while

the loaded (with sample mass) frequency is in the range of 10-20 Hz. The chosen point design for
the load sensor has the mass, spring, and damping coefficients as provided in Table 2.

Table 2: Load-Sensor Parameters
parameter value description

mlc 0.625/(2π)2 kg load-sensor mass
klc 250N

m load-sensor stiffness
clc 2.8135 kg

sec load-sensor damping

Simulations were run for several different sample mass values in order to assess the capability of
G-SAMPLE to identify the amount of sample mass collected. The response characteristics of the
dynamic states are summarized well by figure 4, which is for a collected sample mass of ms = 1.02
kg. The other dynamic responses are qualitatively similar and are not shown.

Figure 4: Typical Dynamics Response of Spacecraft (Example with ms = 1.02 kg)

The responses in figure 4 provide the x and y position and velocity, the orientation θ of the
main spacecraft bus, the relative orientation of the boom θb, the displacement d of the load sensor
(without noise), and the left and right thruster magnitudes. The simulation runs for 90 seconds
with the three thruster firings again representing a typical ascent scenario. The spacecraft is kept
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within a 4◦ attitude of level during the ascent, and the altitude y increased from 10 m to 25 m.
This profile was used for testing the capability of G-SAMPLE.

The load-sensor noise is additive, as discussed with figure 3. A load sensor noise floor of 50 μm
(i.e. σ2

lc = (5 × 10−5)2 m2) is used in simulations; this value also accounts for quantization error
that would affect a sensor measurement. A typical sensor response is depicted in figure 5, where
the load sensor displacement corresponds to that in figure 4.

Figure 5: Typical Load-Sensor Response with Additive Noise (σlc = 5 × 10−5 m)

5.2 Estimation

For the estimation, data from the actual system (figure 4) is sampled at 50 Hz, providing 4500
samples over the 90 second ascent scenario. The line search over guesses m̂s to minimize the cost
function J in (60) and estimate the collected sample mass requires system simulations for each m̂s.
These simulations each generate 4500 expected response samples and can be computationally time
consuming if the line-search increment in m̂s values is small. To aid in this search, a course mess
is generated around the desired sample mass (mdesired

s = 0.5 kg as listed in Table 1). A step size of
0.1 kg is used with m̂s = {0, 0.1, 0.2, ..., 1.4, 1.5} kg in the initial course mesh.

Once an initial minimum cost J is found with the course mesh, a quadratic curve is fit around
this course minimum J and a better estimate of the actual minimum Jfit is found. The sample mass
m̂fit

s corresponding to the fit minimum Jfit is then run through simulations and is added to the
cost curve for J . A second quadratic fit around the new data point provides a better estimate of the
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actual minimum cost and associated sample mass. This form of iteration to find the true JMLE and
mMLE

s is known as Brent’s Method in one dimension [3]. Additional iteration with Brent’s Method
can be utilized to improve the estimate of mMLE

s , but simulations with G-SAMPLE indicate that
one iteration is sufficient for sample mass identification.

Figure 6 provides an example of iterating for mMLE
s with Brent’s Method. The estimate of

mMLE
s is used in the confidence limit calculations from equation (61), and the confidence limits are

indicated under the bottom plot. In this particular example, a lower noise floor of 5 μm is used
because the resultant parabolic cost curve has a large magnitude variation and provides a better
illustration of applying Brent’s Method.
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Figure 6: Utilizing Brent’s Method to Determine mMLE
s (cost zoomed at minimum)

The top plot in figure 6 shows the coarse cost function, which is quadratic in form. The middle
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plot is a zoom of the first fit with the Jfit and its m̂min
s point indicated. The bottom plot is a

zoom of the refined cost function incorporating the new data point (i.e. a new simulation with a
guess mass of m̂min

s ), and the second fit provides mMLE
s . Note, the confidence bounds included in

the bottom plot of figure 6 overlap the actual collected sample mass.
The following figure (figure 7) provides the cost and confidence bounds generated by G-SAMPLE

for actual collected sample masses of ms = {0.53, 0.78, 1.02} kg. In all cases, the mMLE
s is within 10

grams of the actual collected sample and at or within the 95% confidence limits of the estimate. The
noise floor of 50 μm is utilized with all the sensor measurements in these G-SAMPLE simulations,
and the same thrust profile, as depicted in figure 4, is used throughout them. Note that G-SAMPLE
is able to identify
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Figure 7: Estimate Comparison for Different Collected Sample Masses (costs zoomed at minimum)

A comparison simulation with a larger noise floor of 500 μm was conducted to establish the
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sensitivity of the confidence limits and estimate of mMLE
s to noise. Figure 8 illustrates the larger

95% confidence limits on mMLE
s when a large noise floor affects the load sensor; the limits still

contain the actual mass of collected sample are the width of the limits are 0.1 kg. Note, the
response dynamics is figures 4 and 5 were used in this simulation with the noise floor added onto
the distance d response.

Figure 8: Confidence Limits with Larger Noise Floor of 500 μm (cost zoomed at minimum)

5.3 Sensitivity

The robustness of the G-SAMPLE method is examined by assuming knowledge error in the actual
spacecraft parameters. Parameters such as inertias, center-of-mass offset, and first flexible-mode
frequency and damping will not be known precisely for a spacecraft. The following parameters listed
in Table 3 were perturbed from the model data in Table 1 for different quantities of collected sample
mass: inertias are assumed known to within 10% and center-of-mass offset and first-flexible-mode
parameters are assumed known to within 5%.

For a simulation of the actual system based on the perturbed parameters in Table 3, the G-
SAMPLE method is capable of estimating the collected sample to within 95% confidence limits.
The cost function, confidence limits, and mMLE

s are shown in figure 9 for this perturbed case with
a sample mass of ms = 1.02 kg.
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Table 3: Knowledge Error in Actual-System Parameters
parameter value description

ISC 90% Imodel
SC spacecraft main-bus inertia

IB 90% Imodel
B flexible boom inertia about boom c.m.

a 95% amodel axial offset of boom from spacecraft main-bus c.g.
b 95% bmodel lateral offset of boom from spacecraft main-bus c.g.
kb 95% kmodel

b based on kb from equation (63)
cb 95% cmodel

b based on cb from equation (65)
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Figure 9: Estimate of Sample Mass with Knowledge Error in Actual-System Parameters

The deviation of the mMLE
s between figure 9 and the bottom plot in figure 7 is only 1 gram,

with the confidence limits shifts by only 2 grams. Taking the inertia errors to be 110% of the
model and center-of-mass offset and first-flexible-mode parameters to be 105% of the model as in
1, the difference in mMLE

s and the confidence limits is negligible (data not shown). Additionally,
the small influence of errors in these model parameter holds true for other sample mass quantities
too with a similar error in the parameters of Table 3.

Another relevant and significant source of sensitivity in G-SAMPLE comes from the accuracy
to which thrust profiles are known. A sensitivity study was conducted for actual thruster firing
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magnitudes being ±10% and ±20% off of expected values. In this study, only the thruster mag-
nitudes are perturbed while all other parameters are assumed to be perfectly known; sensor noise
of 50 μm is still included. Figure 10 illustrates the cost function and mMLE

s from and estimation
where actual thruster firings are 10% less than expected values.
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Figure 10: Cost and mMLE
s Sensitivity to 10% Error in Actual Thrust Magnitude

Figure 10 indicates that for a 10% error in actual thrust, the mMLE
s is off from the actual col-

lected sample mass by approximately 10%; the confidence limits are not shown (they are incorrect)
because they are based on a single-parameter model with only ms unknown. In fact, when thrust
is deviated by 20%, the mMLE

s is also off from the actual sample mass by approximately 20%. The
error scaling appears nearly linear.

To more accurately estimate the collected sample mass, a different estimator could be con-
structed to use onboard accelerometer data to better profile actual thrust. Otherwise, a separate
estimation could be run before G-SAMPLE to use onboard accelerometer and other measurements
to more closely identify the actual thrust, or prior to sample collection the thrusters could be
more-accurately profiled with onboard accelerometer measurements.

Figure 11 contrasts four plots of the mMLE
s found for the system with ms = 1.02 kg and different

sources of error. The first plot only contains the sensor noise, the second plot is both sensor noise
and actual-parameter error, the third plot is only thrust error, and the bottom plot is a combination
of all three. Notice that the difference between the third and four plots is minimal, indicating that
sensitivity of G-SAMPLE is dominated by thrust profile knowledge.
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Figure 11: Comparison of Cost and mMLE
s from Different Errors

6 Sample-Mass Estimation Error Budget

For convenience to future missions, a sample-mass estimation error budget is developed from the
results of the G-SAMPLE analysis.

6.1 Error Budget Description

The estimate analysis in section 5.2 indicates that noise floor and data sample rate proportionally
affect mass estimates and confidence limits. The sensitivity analysis in section 5.3 shows ±10%
parametric errors in inertias, center-of-mass offset, and first-flexible mode have little to no effect
on the statistics. In contrast, thrust profile errors dominate the sensitivity in G-SAMPLE. These
results make up the error budget illustrated in figure 12 for sample mass estimation.
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Figure 12: Contributions to Sample-Mass-Estimate Error Budget

The error budget in figure 12 is described by the following equation:

Δm = ΔT ms︸ ︷︷ ︸
ΔTPE

+
klcσlc

|alc|
√

N︸ ︷︷ ︸
ΔNDR

+ΔModel (66)

where ms is the actual sample mass, ΔModel is the lumped model error (ΔModel = 5 grams is
conservative for a wide range of mission scenarios, based on the analysis in section 5.3), klc is the
stiffness of the load sensor in units of N/m, and σlc is the load-sensor 1-sigma noise level in units
of meters. Parameter |alc| is the sample-mass acceleration in units of m/s2, and N is number of
data samples during a thruster firing. Parameter ΔT is the thrust profile error (10% thrust error is
ΔT = 0.1 ). Note, for actual thrust less than expected thrust, estimated sample mass is less than
actual; likewise, actual thrust higher than expected makes mass estimates higher than actual mass.
Appendix B provides the derivation and assumptions comprising the error budget equation (66).

Figure 13 summarizes representative vertical-thrust Tvert versus |alc| to provide an idea of the
magnitude of these quantities; this data comes from simulations of the G-SAMPLE dynamics with
spacecraft parameters based on Table 1 in section 5.1. The value of Tvert accounts for thruster
canting relative to the local vertical. Notice that the relationship is close to linear; this linear
relationship is included within the plot.

lc
 

Figure 13: Vertical Thrust and Load-Sensor Acceleration Responses
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6.2 Error Budget Example

The following will illustrate an error budget calculation with equation (66) for an expected sample
mass of ms = 1.02 kg. During a 10-second ascent thruster firing, with Tvert = 58 N, the value of
|alc| from Figure 13 is 0.05 m/s2. A data sample rate of 50 Hz provides N = 500 samples during the
thruster firing. For a noise floor (including both sensor noise and quantization error) of σlc = 50μm,
the NDR (“Noise vs. Data Rate”) contribution to the error budget is

ΔNDR =
klcσlc

|alc|
√

N
=

(
250N

m

) (
50 × 10−6m

)(
0.05 m

sec2

) (√
500
) = 0.011 kg (67)

where the value of klc comes from Table 2 in section 5.1. When the actual thrust profile is 10%
below the expected thrust (i.e. ΔT = 0.1) , the TPE (“Thrust Profile Error”) contribution to the
error budget is

ΔTPE = ΔT ms = 0.1 · 1.02 kg = 0.102 kg. (68)

As stated earlier, the model error contribution to the budget error is minor, and a conservative
value of

ΔModel = 0.005 kg (69)

is assumed. These contributions provide a total, expected sample error of no more than

Δm = ΔTPE + ΔNDR + ΔModel = 0.118 kg. (70)

This offset indicates sample-mass estimates will be below the actual sample mass since actual thrust
is 10% below expected thrust. So based on the error budget analysis, the estimate of sample mass
will be mestimate

s = 0.902 kg.
This case example was run through the G-SAMPLE algorithm where the full nonlinear dynamics

model and the G-SAMPLE estimator are used to find the MLE (maximum-likelihood estimate) for
collected sample mass. The G-SAMPLE algorithm estimates the collected sample at mMLE

s = 0.95
kg, as shown for this case in the bottom plot of figure 11 in section 5.3. The G-SAMPLE estimate
differs from the actual sample mass by only 0.07 kg; thus, the error budget equation (66) provides
a conservative bound on the error.

7 Conclusions

G-SAMPLE has been developed as a method for in-flight sample mass determination using purely
dynamical models with onboard sensor measurements. The use of purely dynamical methods avoids
the added expense of cameras or additional sensors for sample mass determination. Simulations
utilizing the G-SAMPLE algorithm demonstrate that information from accelerations induced in
a typical small-body ascent scenario is suitable to perform an in-flight dynamical estimate of the
collected sample mass. For instance, in one example incorporating realistic error assumptions a
1000 gram sample mass is estimated within 110 grams (95% confidence).

The sensitivity of G-SAMPLE is minimal to realistic knowledge errors in actual spacecraft
parameters such as inertia, center-of-mass offset, and first flexible mode. However, thrust profile
knowledge is shown to be a dominating sensitivity that enters in a nearly one-to-one relationship
with the final mass estimation error (i.e. a 10% thrust profile error is effectively a 10% sample-mass
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estimate error). This emphasizes that thrust profiles should be well characterized with onboard
accelerometers prior to sample collection.

For convenience, results are summarized in a sample-mass estimation error budget that incor-
porates the sensitivity, noise, and sample rate effects on G-SAMPLE estimates. This error budget
provides a simple method to estimate a conservative bound on the sample-mass estimation error
that can be used in sample-collection mission proposals and design.
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A Appendix: Confidence Limits

Define the measurement sequence as,
zk = yk(θ) + nk, k = 1, ..., N (A.71)

where θ ∈ Rp and,
nk ∼ N(0, σ2

k), k = 1, ..., N (A.72)

Then the likelihood function for a single measurement is given by,

p(zk|θ) =
1√

2πσk

exp{−1
2

(
zk − yk(θ)

)2
σ2

k

} (A.73)

Let Zk = {z1, z2, ..., zN} denote the collection of N such measurements. Assuming the measure-
ments zk are statistically independent, the likelihood function becomes,

p(ZN |θ) =
N∏

k=1

p(zk|θ) (A.74)

Taking the log of (A.74) and substituting (A.73) gives,
L(θ) Δ= log

(
p(ZN |θ)) (A.75)

= log(
N∏

k=1

p(zk|θ)) =
N∑

k=1

log(p(zk|θ)) (A.76)

= const − 1
2

N∑
k=1

(
zk − yk(θ)

)2
σ2

k

(A.77)
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Define the maximum likelihood estimate θMLE as the value of θ that maximizes L(θ), i.e.,
θMLE = arg max

θ
L(θ) (A.78)

Analytically, θMLE can be found by setting the calculus derivative of L(θ) to zero, i.e.,
∂L(θ)

∂θ
= 0 (A.79)

Now consider a Taylor expansion on the log-likelihood function L(θ) about θMLE ,

L(θ) � L(θMLE) +
∂L(θ)

∂θ
(θ − θMLE) +

1
2
(θ − θMLE)T

[
∂2L(θ)
∂θ∂θT

]
(θ − θMLE) (A.80)

A well-known result [4] is that the MLE estimate becomes asymptotically normal with covariance
given by,

P = Cov[θ − θMLE ] = −
[
∂2L(θ)
∂θ∂θT

]−1

(A.81)

Substituting (A.79) and (A.81) into (A.80)gives,

L(θ) � L(θMLE) − 1
2
(θ − θMLE)T P−1(θ − θMLE) (A.82)

which can be rearranged to give,
2
(
L(θMLE) − L(θ)

)
= (θ − θMLE)T P−1(θ − θMLE) (A.83)

From the asymptotic normality result (A.81), the quantity θ − θMLE can be written as,
(θ − θMLE) = P

1
2 x (A.84)

where P = P
1
2 P

T
2 and the random vector x is chosen from a standard Gaussian distribution

x ∼ N(0, I). Consequently, one can has the relationship,
(θ − θMLE)T P−1(θ − θMLE) = xT x (A.85)

Since the quantity on the left is the sum of the squares of p independent Gaussians, it is known
to be distributed as a χ2(p) variate (i.e., Chi-Squared with p degrees of freedom - see the Fisher-
Cochrane theorem [5]). Consequently, the right hand side of (A.83) is distributed as a Chi-Squared
distribution with p degrees of freedom. As such, the %(α × 100) confidence bounds on θ is given
by the region satistfying,

2
(
L(θMLE) − L(θ)

)
< q(α) (A.86)

where q(α) is the α quantile of the Chi-Squared distribution with p degrees of freedom. Note that
if sample mass is the only parameter being estimated in the current application, then p = 1.

As a further simplication, define the quadratic cost function,

J(θ) Δ=
N∑

k=1

(
zk − yk(θ)

)2
σ2

k

(A.87)

Then by (A.77) one can write,

L(θ) = const − 1
2
J(θ) (A.88)

Consequently, θMLE can be found be minimizing J(θ) rather than maximizing L(θ). Substituting
(A.88) into (A.86) gives the equivalent confidence bounds in terms of J(θ),

J(θ) − J(θMLE) < q(α) (A.89)
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B Appendix: Error Budget Formulation

B.1 Thrust Profile Error

The TPE (Thrust Profile Error) is based on a F = ma heuristic for the expected force Fexp during
a fixed acceleration ā. In this formulation, Fexp cannot be measured directly, as is the case for
thrust or any force. The equations are as follows:

Fexp = msā (B.90)

Factual = msaactual (B.91)

where Factual = (1+ΔT )Fexp and aactual = (1+Δactual)ā. Here, aactual would represent a measured
acceleration, which might differ from the desired ā. Then,

(1 + ΔT )Fexp = (1 + Δactual)msā

=⇒ ΔT = Δactual

and so
ΔT Fexp = (ΔT ms)ā. (B.92)

Then for the actual fixed acceleration ā, the error in the collected sample can be budgeted, based
on an assessment of the error in the thrust profile. So the contribution of TPE to the sample-mass
error budget is

ΔTPE = ΔT ms. (B.93)

B.2 Noise vs. Data Rate Error

The NDR (Noise vs. Data Rate) error contribution is based on a least-squares estimate [6] of
simplified load-sensor dynamics where noise enters through the sensor displacement:

Flc = msalc = klcd (B.94)

where d is affected by additive zero-mean, Gaussian-white noise η ∈ N (0, σ2
lc) with variance σ2

lc:
d = d̄ + σlc · η. (B.95)

In (B.94), measurements of acceleration alc are assumed to be known perfectly, without contributing
noise. A reformulation of (B.94) gives

d̄ = msā + v (B.96)

where v = σlc ·η and ā = alc
klc

. Note, the sign of v is insignificant since η will take on random positive
or negative values.

A least-squares estimate m̂s of the sample mass ms is given by the following [6]:
m̂s = (AT A)−1AT B (B.97)

where A = (ā1, ā2, ..., āN )T and B = (d̄1, d̄2, ..., d̄N )T are vectors containing N independent mea-
surements (samples) of ā and d̄, respectively.

The variance of the estimate m̂s is given by
σ2

m = (AT A)−1σ2
lc. (B.98)

24



If the acceleration ā is held constant, then this variance can be expressed as follows:

σ2
m =

σ2
lc

N2ā2
=

k2
lcσ

2
lc

N2a2
lc

. (B.99)

The standard deviation σm represents the contribution of NDR error to the error budget:

ΔNDR =
klcσlc

|alc|
√

N
. (B.100)
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